Fusion Rules for the Vertex Operator Algebras M(1)+ and V+L
نویسندگان
چکیده
منابع مشابه
Fusion Rules for the Vertex Operator Algebras M (1)
The fusion rules for the vertex operator algebras M(1)+ (of any rank) and V + L (for any positive definite even lattice L) are determined completely.
متن کاملVertex operator algebras, fusion rules and modular transformations
We discuss a recent proof by the author of a general version of the Verlinde conjecture in the framework of vertex operator algebras and the application of this result to the construction of modular tensor tensor category structure on the category of modules for a vertex operator algebra.
متن کاملFusion rules for the free bosonic orbifold vertex operator algebra
Fusion rules among irreducible modules for the free bosonic orbifold vertex operator algebra are completely determined.
متن کاملVertex Operator Algebras And
Let V be a vertex operator algebra. We construct a sequence of associative algebras A n (V) (n = 0; 1; 2; :::) such that A n (V) is a quotient of A n+1 (V) and a pair of functors between the category of A n (V)-modules which are not A n?1 (V)-modules and the category of admissible V-modules. These functors exhibit a bijection between the simple modules in each category. We also show that V is r...
متن کاملTo Vertex Operator Algebras
In this exposition, we continue the discussions of Dong [D2] and Li [L]. We shall prove an S3-symmetry of the Jacobi identity, construct the contragredient module for a module for a vertex operator algebra and apply these to the construction of the vertex operator map for the moonshine module. We shall introduce the notions of intertwining operator, fusion rule and Verlinde algebra. We shall al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2004
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-004-1132-5